پایان نامه برق قدرت:بررسی حالات گذرای الکترومغناطیسی درتوربین های بادی |
اسفند ماه 92
تکه هایی از متن به عنوان نمونه :
چکیده
بررسی حالات گذرای الکترومغناطیسی در توربینهای بادی
به کوشش
حمید صمصامی
با توسعه روزافزون توربینهای بادی، بالا بردن کارآیی آن حیاتی تر شده است. یکی از فاکتورها برای سنجش کارآیی توربین بادی، عملکرد آن در قبال مسائل حالت گذرا است. پدیده هایی که منجر به ایجاد حالات گذرای الکترومغناطیسی بر روی مزرعه بادی می شوند، به دو مقوله صاعقه و کلیدزنی تقسیم بندی شده است، که هر کدام به دو زیر شاخه تقسیم شده اند: مطالعات درون سیستم و مطالعات درون شبکه ای. در بخش صاعقه، مواردی از جمله میزان تاثیرپذیری مبدل ها از صاعقه، نقش سیستم زمین در اضافه ولتاژها، تاثیر ارتفاع توربین بر اضافه ولتاژها، تاثیر وجود هر یک از برقگیرها بر کاهش اضافه ولتاژها، تاثیر طراحی مزرعه (وجود یا عدم وجود ترانسفورماتورهای افزاینده) بر اضافه ولتاژها، برخورد صاعقه به خط انتقال متصل به مزرعه و تاثیر آن بر توربین ها و برخورد صاعقه به ناسل توربین مورد بحث و بررسی قرار گرفته است.
در بخش کلیدزنی، عوامل اصلی کلیدزنی در دو حوزه بررسی شده است: کلیدزنی بر روی سیستم DFIG و کلیدزنی بر روی شبکه. از جمله عاملهای کلیدزنی بر روی سیستم DFIG می توان به سنکرون کردن توربین ها با شبکه، بی برق کردن توربین ها، وصل بانک های خازنی و بروز خطاهای ناخواسته بر روی مبدلها اشاره کرد. در حوزه کلیدزنی بر روی شبکه تنها به قطع و وصل خطوط اشاره شده است.
برای رسیدن به این اهداف، این پایان نامه در پنج فصل تدوین شده است. در فصل اول مقدمه ای اجمالی بر توربینهای بادی شامل معرفی انواع تقسیم بندیهای توربینها و همچنین معرفی اجزای یک توربین بیان شده است. حالتهای گذرای ممکن در یک DFIG در فصل دوم گنجانده شده است که شامل دو حوزه صاعقه و سوییچینگ می شود. فصل سوم به مدل سازی توربین بادی با ژنراتور DFIG پرداخته است. نتایج شبیه سازی که بوسیله مدل ارائه شده در فصل سوم بدست آمده است، در فصل چهارم گنجانده شده است و در انتها، نتیجه گیری و ارائه پیشنهادات جهت مطالعات آتی در فصل پنجم شرح داده شده است.
فهرست مطالب
عنوان
فصل اول: مقدمه ای بر توربین های بادی
1-1- مقدمه
1-2- توربین های بادی
1-2-1- معرفی اجزای توربین بادی
1-3- تقسیم بندی توربین های بادی
1-4- ژنراتور القایی با تغذیه دوگانه
1-4-1- طراحی و عملکرد DFIG
1-4-2- مزایای DFIG
1-4-3- مدل ها و کنترل گذرا
1-5- مسائل موجود در بهره برداری DFIG
1-5-1- ژنراتور بادی در حالت اتصال به شبکه
1-5-2- توربین بادی در حالت جدا از شبکه
فصل دوم: حالتهای گذرای ممکن در DFIG
2-1- مقدمه
2-2- صاعقه
2-2-1- فیزیک صاعقه
2-2-2- جریان ناشی از اصابت صاعقه
2-3- کلیدزنی
2-3-1- برق دار کردن توربین ها
2-3-2- بی برق کردن توربین ها
2-3-3- کلیدزنی بانک خازنی
فصل سوم: مدل سازی DFIG در حالت گذرا
3-1- سیستم مورد مطالعه
3-2- مدل تجهیزات در EMTP
3-2-1- منبع جریان صاعقه
3-2-2- ساختمان توربین بادی
3-2-3- سیستم زمین
3-2-4- ژنراتور القایی با تغذیه دوگانه
3-2-5- برقگیر
3-2-6- خازن های پراکندگی
فصل چهارم: شبیه سازی
4-1- مقدمه
4-2- شبیه سازی حالتهای گذرای ناشی از صاعقه
4-2-1- برخورد صاعقه به پرههای توربین بادی
4-2-2- برخورد صاعقه به خط انتقال متصل به مزرعه بادی
4-3- شبیه سازی حالت های گذرای ناشی از کلیدزنی
4-3-1- کلیدزنی بر روی سیستم DFIG
4-3-2- کلیدزنی بر روی شبکه متصل به مزرعه بادی
فصل پنجم: نتیجه گیری و ارائه پیشنهادات
5-1- مقدمه
5-2- نتیجه گیری
5-2-1- صاعقه
5-2-2- کلیدزنی
5-3- ارائه پیشنهادات جهت مطالعات آتی
منابع و مأخذ
صفحه
1
1
3
3
8
9
10
10
13
16
16
21
29
29
33
33
33
35
35
39
39
41
41
43
43
44
45
47
48
49
50
50
51
51
60
61
62
91
96
96
97
97
99
102
103
فهرست شکلها
عنوان
شکل شماره 1- اجزای توربین بادی
شکل شماره 2- اتصال ژنراتور القایی از نوع DFIG به شبکه
شکل شماره 3- سیستم تبدیل انرژی بادی با بهره گرفتن از DFIG
شکل شماره 4- الگوریتم کنترلی مبدل سمت روتور برای کنترل و
شکل شماره 5- کنترل مبدل سمت خط برای تنظیم ولتاژ dc و تامین توان راکتیو
شکل شماره 6- دیاگرام تک خطی یک سیستم قدرت ساده
شکل شماره 7- بلوک دیاگرام کنترل کننده برای اینورتر سمت شبکه
شکل شماره 8- بلوک دیاگرام فرکانس شبکه مبتنی بر کنترل اینورتر سمت شبکه
شکل شماره 9- سیستم قدرت DC
شکل شماره 10- سیستم قدرت تجدیدپذیر AC
شکل شماره 11- یک سیستم قدرت بادی – دیزلی بزرگ
شکل شماره 12- سیستم DFIG در حالت جدا از شبکه
شکل شماره 13- مدار معادل خازنهای بزرگ (CS)
شکل شماره 14- تغییرات ولتاژ حاصل از تخلیه جوی الکتریکی
شکل شماره 15- مدل صاعقه
شکل شماره 16- سیستم DFIG
شکل شماره 17- سیستم بادی مورد مطالعه
شکل شماره 18- طرح کلی توربین بادی
شکل شماره 19- شکل موج صاعقه
شکل شماره 20- مدل خط با پارامترهای توزیع شده
شکل شماره 21- مدل DFIG
شکل شماره 22- مبدل PWM
شکل شماره 23- اضافه ولتاژ ایجاد شده در نقطه m2 ناشی از برخورد صاعقه به پره
شکل شماره 24- سیستم DFIG
شکل شماره 25- اضافه ولتاژ ایجاد شده بر روی مبدلهای سیستم DFIG
شکل شماره 26- نمودارهای پیک اضافه ولتاژ بر حسب ارتفاع توربین
شکل شماره 27- زمان میرایی اضافه ولتاژها بر حسب ارتفاع توربین
شکل شماره 28- مقایسه اضافه ولتاژها در دو سناریوی مختلف برای نقطه m2
شکل شماره 29- مقایسه اضافه ولتاژها در دو سناریوی مختلف برای سیستم زمین
شکل شماره 30- مقایسه اضافه ولتاژ ایجاد شده بر روی m2 در دو حالت برخورد صاعقه به پره و ناسل
شکل شماره 31- تاثیر وجود برقگیرهای تعبیه شده در دو سمت ترانسفورماتور افزاینده بر اضافه ولتاژ
نقطه m2
شکل شماره 32- تاثیر وجود برقگیرهای تعبیه شده در دو سمت ترانسفورماتور افزاینده بر اضافه ولتاژ
نقطه m8
شکل شماره 33- تاثیر وجود برقگیر تعبیه شده در سمت HV ترانسفورماتور بر اضافه ولتاژ نقطه m2
شکل شماره 34- مقایسه اضافه ولتاژ ایجاد شده برای دو سیستم مذکور در نقطه m2
شکل شماره 35- برخورد صاعقه به خط انتقال و مقایسه اضافه ولتاژ ایجاد شده در دو حالت مذکور برای نقطه m2
شکل شماره 36- سیستم DFIG
شکل شماره 37- ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب اول
شکل شماره 38- ولتاژ استاتور در ترتیب اول
شکل شماره 39- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب اول
شکل شماره 40- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب دوم
شکل شماره 41- شکل موج ولتاژ استاتور در ترتیب دوم
شکل شماره 42- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب دوم
شکل شماره 43- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب سوم
شکل شماره 44- شکل موج ولتاژ استاتور در ترتیب سوم
شکل شماره 45- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب سوم
شکل شماره 46- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب چهارم
شکل شماره 47- شکل موج ولتاژ استاتور در ترتیب چهارم
شکل شماره 48- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب چهارم
شکل شماره 49- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب پنجم
شکل شماره 50- شکل موج ولتاژ استاتور در ترتیب پنجم
شکل شماره 51- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب پنجم
شکل شماره 52- اضافه ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب اول
شکل شماره 53- اضافه ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب دوم
شکل شماره 54- شکل موج ولتاژ استاتور در ترتیب دوم
شکل شماره 55- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب سوم
شکل شماره 56- شکل موج ولتاژ استاتور در ترتیب سوم
شکل شماره 57- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب سوم
شکل شماره 58- ولتاژ حاصل بر روی مبدل سمت شبکه DFIG در ترتیب چهارم
شکل شماره 59- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در ترتیب پنجم
شکل شماره 60- شکل موج ولتاژ استاتور در راه حل اول
شکل شماره 61- شکل موج ولتاژ مبدلهای DFIG در راه حل اول
شکل شماره 62- شکل موج ولتاژ سمت LV ترانسفورماتور افزاینده در راه حل دوم
شکل شماره 63- شکل موج ولتاژ استاتور در راه حل دوم
شکل شماره 64- شکل موج ولتاژ مبدل سمت شبکه در راه حل دوم
شکل شماره 65- شکل موج ولتاژ القا شده استاتور ناشی از نابرابر بودن ولتاژها
شکل شماره 66- مقایسه دو ترتیب عنوان شده در برق دار کردن ترانسفورماتورهای افزاینده
شکل شماره 67- مقایسه اضافه ولتاژ ایجاد شده در سمت HV ترانسفورماتور بدون حضور خازن
شکل شماره 68- مقایسه اضافه ولتاژ ایجاد شده در سمت LV ترانسفورماتور بدون حضور خازن
شکل شماره 69- مقایسه اضافه ولتاژ ایجاد شده در سمت HV ترانسفورماتور با حضور خازن
شکل شماره 70- مقایسه اضافه ولتاژ ایجاد شده در سمت LV ترانسفورماتور با حضور خازن
شکل شماره 71- مقایسه اضافه ولتاژ ایجاد شده در سمت HV ترانسفورماتور با و بدون شار باقیمانده با حضور بانک خازنی
شکل شماره 72- مقایسه اضافه ولتاژ ایجاد شده در سمت LV ترانسفورماتور با و بدون شار باقیمانده با حضور بانک خازنی
شکل شماره 73- مقایسه اضافه ولتاژ ایجاد شده در سمت HV ترانسفورماتور با و بدون شار باقیمانده بدون حضور بانک خازنی
شکل شماره 74- مقایسه اضافه ولتاژ ایجاد شده در سمت LV ترانسفورماتور با و بدون شار باقیمانده بدون حضور بانک خازنی
شکل شماره 75- شکل موج ولتاژ PCC و اضافه ولتاژ ایجاد شده ناشی از کلیدزنی بانک خازنی در یک پله
شکل شماره 76- شکل موج ولتاژ LV ترانسفورماتور افزاینده و اضافه ولتاژ ایجاد شده ناشی از کلیدزنی خازنی در یک پله
شکل شماره 77- شکل موج ولتاژ PCC و اضافه ولتاژ ایجاد شده ناشی از کلیدزنی بانک خازنی در 16 پله
شکل شماره 78- کل موج ولتاژ LV ترانسفورماتور افزاینده و اضافه ولتاژ ایجاد شده ناشی از کلیدزنی خازنی در 16پله
شکل شماره 79- مقایسه اضافه ولتاژ ناشی از کلیدزنی اول در دو حالت مذکور برای PCC
شکل شماره 80- مقایسه اضافه ولتاژ ناشی از کلیدزنی اول در دو حالت مذکور برای سمت LV ترانسورماتور افزاینده
شکل شماره 81- تاثیر روش VZSC بر کاهش گذراهای ناشی از کلیدزنی خازنی در PCC
شکل شماره 82- تاثیر روش VZSC بر کاهش گذراهای ناشی از کلیدزنی خازنی در ولتاژ سمت LV ترانسفورماتور افزاینده
شکل شماره 83- تنظیم نبودن زمان وصل فاز b کلید قدرت و تاثیر منفی آن بر فاز a ولتاژ ترانسفورماتور
شکل شماره 84- تاثیر روش VPZC بر کاهش گذراهای ناشی از کلیدزنی خازنی در ولتاژ PCC
شکل شماره 85- تاثیر روش VPSC بر کاهش گذراهای ناشی از کلیدزنی خازنی در ولتاژ سمت LV ترانسفورماتور افزاینده
شکل شماره 86- تنظیم نبودن ولتاژ اولیه خازن در فاز b و تاثیر منفی آن بر فاز a ولتاژ ترانسفورماتور
شکل شماره 87- تریستور
شکل شماره 88- تاثیر سوختن تریستور بر ولتاژ مبدل DFIG در حالت on-grid
شکل شماره 89- تاثیر سوختن تریستور بر ولتاژ مبدل DFIG در حالت off-grid
شکل شماره 90- تاثیر سوختن تریستور بر ولتاژ LV ترانسفورماتور افزاینده در حالت off-grid
شکل شماره 91- تاثیر قطع شدن خط انتقال بر PCC
شکل شماره 92- تاثیر قطع شدن خط بر ولتاژ LV ترانسفورماتور
شکل شماره 93- مقایسه اضافه ولتاژ ایجاد شده در فاز a از PCC ناشی از قطع شدن خط در صورت وجود و عدم وجود برقگیر
شکل شماره 94- مقایسه اضافه ولتاژ ایجاد شده در PCC در سه سناریوی مذکور
شکل شماره 95- شکل موج ولتاژ PCC بعد از وصل خط
شکل شماره 96- شکل موج ولتاژ LV ترانسفورماتور افزاینده بعد از وصل خط
شکل شماره 97- شکل موج ولتاژ HV ترانسفورماتور افزاینده بعد از وصل خط
صفحه
3
6
11
15
15
17
20
21
23
24
25
27
27
31
35
36
41
42
44
45
47
48
52
53
53
54
55
56
56
57
58
58
59
60
61
63
64
64
64
65
65
65
66
67
67
67
68
68
69
69
69
70
71
71
71
72
72
72
73
74
74
74
75
75
76
77
78
78
79
79
80
81
82
82
83
83
84
84
85
85
86
86
87
87
88
88
89
90
91
91
92
93
93
94
95
95
95
فهرست نشانه های اختصاری
C= خازن
= باند هیسترزیس برای کنترل جریان هیسترزیس
= بردار جریان سمت منبع برای سیستم DFIG
= مولفه راکتیو جریان مبدل سمت منبع
= بردار جریان سمت روتور برای سیستم DFIG
= جریان مرجع
= مولفه راکتیو جریان روتور
= بردار جریان سمت استاتور برای سیستم DFIG
J= ممان اینرسی ماشین
= توان تحویل شده به سیستم از طرف مبدل سمت منبع
= توان الکترومکانیکی ماشین
= توان تحویل داده شده به شبکه از طرف DFIG
= توان مکانیکی ورودی به ماشین
= توان اسمی ماشین
= توان تحویل داده شده به شبکه از طرف استاتور
= توان مرجع تحویل داده شده به شبکه از طرف استاتور
فرم در حال بارگذاری ...
[شنبه 1398-12-03] [ 04:32:00 ق.ظ ]
|